Performance of the FastTracKer in ATLAS

Maddalena Giulini
under supervision of Prof. A. Schöning and Dr. T. Klimkovich

Physikalisches Institut, Universität Heidelberg

DPG Spring Conference, Mainz
March 26, 2014
Tracking in ATLAS Trigger system for Run II

Full tracking information immediately after the first trigger level in Run 2

- selection of events with b’s and/or τ’s
 - **tracking**: most powerful separation of signal with b and τ from QCD
 - $H \rightarrow b\bar{b}$, $H \rightarrow \tau\bar{\tau}$, New Physics
- lepton isolation using tracking

\[\Downarrow \]

FastTracKer (FTK): global and fast tracking

![Diagram of FastTracKer (FTK) system]

- Run 1: Level 1 <2.5 μs, Level 2 ~80 ms, Event Filter ~1 s
- Run 2: Level 1 <2.5 μs, Level 1 ~200 ms, FTK global fast tracking ~100 μs
- High Level Trigger: 40 MHz, >75 / 100 kHz, 6 / 7 - 17 kHz, 0.4 / 0.5 - 1 kHz
FastTracKer (FTK)

- **custom electronics system**: global track reconstruction ($\sim 100 \mu s$)
- highly **parallel** system organized in 64 $\eta - \phi$ towers
- track reconstruction: $p_T > 1$ GeV, $|\eta| < 2.5$

Performance in $t\bar{t}$ sample

Not matched to truth in $H \to \tau\tau$

CERN-LHCC-2013-007 ATLAS-TDR-021
FTK tracks in trigger objects and chains

FTK tracks can help in many ways:

- **Primary Vertices (PV):** reconstructed from FTK tracks, (pileup rejection)
- **jets:**
 - PV energy corrections similar to offline jets
 - Jet Vertex Fraction cuts
 - b–tagging with FTK tracks
- **muons and electrons:** track-based isolation
- **τ:** number of FTK tracks in isolation cones (FTK Level-2 τ trigger), $H \rightarrow \tau\tau$ increase of acceptance of 28% for $\tau_{\text{had}}\tau_{\text{had}}$
- **Missing Transverse Energy (MET):** improve trigger resolution using track and PV information
Missing Transverse Energy with FTK tracks

The challenge of MET triggers:
- **global quantity**: full detector (no RoI)
- high rate of low p_T **background** events
- very important for **New Physics**!

$$\text{MET} = \text{hard term} \ (\text{high } p_T \text{ jets}) + \text{soft term} \ (\text{low } p_T \text{ objects})$$

Run 1 MET triggers: only calorimetric information for soft and hard term → **very sensitive to pileup**

Run 2 global tracking is fundamental. Exploiting **FTK tracks from PV for soft term**:
- better resolution
- reject pileup contribution

More sophisticated combination of calorimetric information with FTK tracks:

Particle Flow!

↓

particle flow jets with better resolution for hard term
Particle flow (PFlow) algorithm main idea

1. match tracks (charged particles) to calorimeter energy deposits (clusters)
2. tracks + remaining clusters are used

Benefits

1. **better energy, η and ϕ resolution** than calorimeter one of low momentum particles
2. only tracks coming from Primary Vertex (PV) taken into account
 \[\Rightarrow \text{pileup contribution reduction} \]

ATLAS on-going studies of application of PFlow to **jets** and **Missing Transverse Energy** with offline tracks

\[\downarrow \]

improvements in resolution and scale
Application in Trigger of PFlow with FTK tracks

At the HLT:

- **Topological Clusters**
- **Tracks from FTK**
 - $p_T > 1 \text{ GeV} \& p_T < 40 \text{ GeV}$
 - $|z_0|_{BL} < 110 \text{ mm}$ \quad $|d_0|_{BL} < 2 \text{ mm}$
 - implicit good track: at least 9 hits

Samples (all @ $\langle \mu \rangle = 60$):

- **Signal**: $ZH \rightarrow \nu \nu bb$
- $t\bar{t} \rightarrow (Wb)(Wb) \rightarrow (l\nu b)(qqb)$
- multi-jet: $20 < p_T^{\text{truth, lead}} < 200 \text{ GeV}$
Anti-k_T R=0.4 Jet resolution comparison

- PFlow jets with FTK tracks
- Standard jets: with calibrated clusters
- PFlow jets with offline tracks

Resolution of PFlow jets is better than Standard jets
MET resolution

\[ZH \rightarrow \nu\nu bb \]

ATLAS Simulation work in progress

ZH→νν bb, \(\mu=60 \)

\(\sqrt{s} = 14 \text{ TeV} \)

Offline PFlow \(E_T^{\text{miss}} \) better resolved than

FTK PFlow \(E_T^{\text{miss}} \) better than FTK+JET

\[t\bar{t} \]
Performances studied for a trigger chain:
Level 1 MET > 50 GeV \rightarrow HLT MET > 80 GeV

turnon curve = $\frac{\# \text{ events after L1} \& \text{ HLT}}{\# \text{ events after L1}}$ (offline MET)

- cut on HLT MET: **the same bkg rate** (multi-jet) wrt Run1
- HLT MET (only calorimeter) > 80 GeV
- FTK PFlow MET in $|\eta| < 2.5$: steeper turnon curve in truth

MET and lower HLT MET cut
Summary

- FastTracKer (FTK) will provide tracks at trigger level (after L1)
- many trigger chains will take advantage from global FTK track information
- FTK tracks in MET trigger chain and particle flow jets:
 - improvement in pflow jet resolution wrt to standard offline jets
 - steeper turn on curve of PFlow MET wrt Standard jet MET turn on curve
Single Particle Performance

- an emulation mimics the behaviour of FTK hardware and output
- trigger studies can be performed
- to give an idea: reconstruction efficiency of single muons without pileup wrt truth muons

FTK Efficiency P_t

![Graph showing FTK Efficiency P_t.](image)

FTK Efficiency η

![Graph showing FTK Efficiency η.](image)
Number of events that pass the HLT selection and the truth selection in $L = 122 \text{ fb}^{-1}$

<table>
<thead>
<tr>
<th>Truth MET cut (GeV)</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>only Truth & L1</td>
<td>1410</td>
<td>1218</td>
<td>1060</td>
<td>930</td>
<td>792</td>
<td>676</td>
</tr>
<tr>
<td>Jet MET</td>
<td>1307</td>
<td>1150</td>
<td>1016</td>
<td>899</td>
<td>773</td>
<td>666</td>
</tr>
<tr>
<td>$</td>
<td>\eta^{\text{jet}}</td>
<td>< 2.5$ Jet MET</td>
<td>1282</td>
<td>1127</td>
<td>994</td>
<td>876</td>
</tr>
<tr>
<td>PFlow MET</td>
<td>1322</td>
<td>1165</td>
<td>1026</td>
<td>907</td>
<td>777</td>
<td>670</td>
</tr>
<tr>
<td>$</td>
<td>\eta^{\text{jet&FTK}}</td>
<td>< 2.5$ PFlow MET</td>
<td>1342</td>
<td>1173</td>
<td>1028</td>
<td>905</td>
</tr>
<tr>
<td>Jet+FTK</td>
<td>1335</td>
<td>1176</td>
<td>1033</td>
<td>911</td>
<td>781</td>
<td>669</td>
</tr>
<tr>
<td>$</td>
<td>\eta^{\text{jet&FTK}}</td>
<td>< 2.5$ Jet+FTK</td>
<td>1290</td>
<td>1135</td>
<td>1001</td>
<td>883</td>
</tr>
</tbody>
</table>

ATLAS Simulation work in progress
FastTracKer (FTK)

- FTK: custom electronics system for global track reconstruction (≈ 100 μs) after L1
- highly parallel system organized in 64 $\eta - \phi$ towers
- full-resolution hits from Pixel and Silicon strip
- **Associative Memory & Track Fitter**: pattern recognition and first track fitting
- **Second Stage Fit Board**: refines the track quality
- tracks with $p_T > 1$ GeV, $|\eta| < 2.5$
 \[\downarrow\]
 at the beginning of L2